Short-Ranged Correlations (SRC) are pairs of strongly interacting nucleons whose separation is comparable to their radii. Their overlapping quark distributions and strong interaction makes SRC pairs an ideal system to study phenomena that bridge among low-energy nuclear structure, high-density nuclear matter, and high-energy quark distributions. As such, their study has significant consequences for strong-interaction physics, hadronic structure and nuclear astrophysics.

Our group studies SRCs using measurements of high-energy electron, proton, and Ion scattering reactions that illuminate the interplay between nuclear and quark-gluon dynamics in nuclei. These studies are primarily done at Jefferson-Lab (USA) but also at JINR (Russia) and GSI (Germany).

 

Current activities include:

  • SRC breakup studied using hard nucleon knockout reactions,

  • Bound nucleon s Structure Functions studied using Tagged DIS measurements,

  • Developing an effective theoretical framework for consistently modeling ab-initio many-body nuclear wave-functions and nucleon knockout reactions,

  • Development of large acceptance fast neutron detectors and laser calibration systems.

Precision accelerator-based neutrino oscillation measurements relay on precise and accurate modeling of the interaction of neutrinos with atomic nuclei. At the moment, our insufficient understanding of such interactions is a dominant systematic in extraction of neutrino oscillation parameters and can potentially prevent achieving the goals of next-generation  neutrino oscillation experiments such as DUNE and T2-HyperK.

We constrain theoretical models of neutrino-nucleus interactions, by preforming measurements of wide phase-space neutrino and electron scattering reactions using the MicroBooNe (Fermilab) and CLAS (JLab) detectors. These data allow addressing outstanding issues in neutrino physics such as the accuracy of incident neutrino energy reconstruction for oscillation analyses, and constraints on searches for physics beyond the standard model. Current activities include:

  • Electrons for Neutrinos (JLab / CLAS),

  • Neutrino Interactions Event Generators (GENIE),

  • Neutrino Induced Proton Knockout (MicroBooNE).

Precision measurements of low-energy nuclear decays are a sensitive probe for new physics that complements high-energy searches such as at the LHC. The MIT led OLIVIA experiment seeks to measure the Li-8 beta decay process using a novel and non-conventional TPC based experimental setup that enables significant increase in statistics and present different systematics as compared to 'traditional' experiment techniques.